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Aeronautics now covers a large field. The bibliography alone, compiled and published
annually by the United States National Advisory Committee for Aeronsautics, requires some-
thing like 200 pages of a book 7 inches by 10 inches. Needless to say, I am not undertaking
to review the whole field.

Owing to the difficulties of conducting free flight tests of performance and the fact that
we can not afford to make many mistakes in an appliance whose operation involves the risk of
human life, it is peculiarly desirable that we may be able to predict the performance of the
completed airplane from smell-scale experiments; and probably in no other branch of mechani-
cal science have we at present so many research laboratories. )

In view, then, of the universal use of models and wind tunnel tests to obtain results upon
which are based predictions of performance of full-sized airplanes, it appears worth while to give
some consideration to the foundation, as it were, of such methods. The mathematical basis
of the law of mechanical similitude has been traced back ss far as Sir Isaac Newton, but it is
believed that the first serious practicel application was that made by Mr. William Frouds,
when, some 65 years ago, with the aid of the Admiralty, he built in his garden at Torquay a
long tank filled with water, in which he tested models of vessels. Froude’s methods have
been universally accepted by naval architects as of great value, and they are able to predict
performances of full-sized ships with accuracy adequate to the purposes of the engineer. Never-
theless, they are not exact, and in the lest analysis their justification is due to the fact that
the results they predict for the fullsized ship are substantially verified in practice. However,
Froude separated the frictional resistance of the model from its wave-making resistance, or
the resistance absorbed in the production of waves, and it is to the latter only that Froude's
law of comparison applies. Frictional resistance is calculated from coefficients originally
determined by Froude upon the basis of tests with comparatively small plane surfaces at low
speeds, and it is generally recognized now by naval architects that large-scale experiments
would be desirable to give us greater assurance of accuracy when dealing with present-day
ships.

The most fundamental and instructive method of covering this whole question of the
value of model experiments is based upon the principle of dimensional homogeneity first fully
enunciated, I believe, some 15 years ago by & Russian, Riabouchinski. In the United States,
Doctor Buckingham has taken up the matter and done much work to amplify, clarify, and
apply the principle. In a paper in 1915 before the American Society of Mechanical Engineers
he gave a number of illuminating applications. In the mathematical treatment below I follow
essentially Buckinghem’s methods. :

Instead of considering the general formula, which may be of a beautiful simplicity to the
mathematical physieist but is not too easy to follow for us who are not mathematical physicists,
I will consider only the general case applying to motion of objecis in a fluid medium. The

1 The thirteenth annual Wilbur Wright memorial lecture, read in London before the Royal Aeronautical Society of Great Britaln Apr. 30,
1625, by Commaender J. C. Hunsaker for Dr. D. W. Taylor and published by permission of that suclety. 219
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first thing to establish is the quantities involved; that is, the physical quantities present which
can affect the case. Let us denote by B the resistance of the object; by V its speed; by L its
size, or some linear dimension; by p the density of the fluid; by u the viscosity of the fluid;
by C the compressibility of the fluid; and by ¢ the acceleration of gravity. In addition there
are cerfain ratios present which I will denote by 7y, 75, etc. These ratios express certain physmal
facts, such as aspect ratio of an airfoil, its angle of atfack, ete. They are all independent-of size.

It meay be that the quantities enumerated above. do not comprise all of the quantxtles we
should consider, but they do comprise the most obvious ones and are sufficient in number to
illustrate the point desired to be made. Now all these quantities can be expressed in terms of
three units, and we will choose the simplest and most commonly used units, namely, those of
mass, m; length, I; and time, {. Each of these physical quantities also has well-known dimen-
sions. The table below gives the quantities enumerated above and their dimensions in m, I,
and t. '

Quantities involved Dimenslons in
m, I, and ¢
B Resistance. . ... .o mli?
V Speed. . oo L
L Sizeocon ool 1
p Densityoffluid...... ... _______._ mI?
g Viscosity of fluid..... ... ______._mlt?
C Compressibility of fluid... ... ._...._... m™t 1§
g Acceleration of gravity. .. __._.___._._.__._ I¢t?
7, 72y etc. Ratios.. ... ... __..__._____.__.__.. Dimensionless.

Now if the quantities above have a relation connecting them it may be written as follows:
F (L, £y v, Rr Hy 0'.- g, Tty 1oy ——) =0 §))

This eﬁuation, of course, teaches us nothing except that there is some relation between the
seven physical quantities entering the case. Now let us choose three of the above quantities
(this is because we have three units fo express them all), and, instead of writing the relation
symbolically between the seven simple quantities, let us use the following, involving the seven

quantities in four compound quantities or variables:
FLopd VeR, Lap Vi, Lap VEC, P pm VP g, 1y, 13y ——)=0 2

By the principle of dimensional homogeneity, since the physical relations or facts expressed
by the above do not change with change of units, the eompound variables or quantities above
must be dimensionless; that is, of zero dlmensmns By expressing their dimensions in terms
of the dimensions of the three fundamental units, we have for each quantity three equations
to determine the exponents ¢, ?, ¢, etc. Let us take the first quantity. Our dimensional equa-
tion is . ’

Lo pb Ve R=lemb [ lctemli?

e [0 Bbtett bt (o3

In order that the expression may be dimensionless, we must have the index of 7, forinstance,
equal to zero; that is, —38b+c¢+1 equal to zero; similarly, the indices of m and ¢ must equal
zero. This gives us the three equations below, whose solution is obvious:

a—8b+c+1=0 ' a=—2
b+1=0 whence b= — 1
— ¢—2=0 c=~2

o+ R ,
So, our first quantity is i1
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Proceeding to the second quantity and treating it in exactly the same manner, we have the
following:
L Vip=Ume Ut mi
= Jd—8etf—1 meH £

Whence—
d—3¢ +f—1=0
el =0
f—-1 =0
d=—1
=1
f=-1

Then our second expression is 1%7. Of course in practice it makes no difference whether

we use the above expression or its reciprocal. The ra.i;io;)’f is 8 quantity a good deal used in
physical parlance, called the kinematic viscosity, and denoted by ». So our second vari-
able will be 775

Proceeding in just the same manner for the third and fourth quantities we finally reduce

the general equation to
F, (p%, 2oL POH, 1 — —)=0 @)

Now pL?C has of course the dimensions of %,: and since the velocity of sound in air is propor-

tional to —_\/‘1)—71 , if we denote by V, the velocity of sound in eir we may use instead of the variable

V.
Now we can solve the above symbolically for any one of the compound variables. Solving
for the first, we have

pL2V3( the variable E,
s

_R_.:F(L Ly )
PYA RV A A v R R

Since we are interested primarily in the resistance, R, let us tra.nsf.orm the above as below:
R=pL2V*X F,(ﬁ,, %, :’]:-7%, 71, P— —) )

The ratios ry, 13, ete., express such things as aspect ratio, angle of attack, etc., and hence are
obviously the same for the model as for the full-sized object, so that for purposes of comparison
between model and full-sized object they affect the case only as constants or fixed coefficients;
to be determined by experiment or some other independent method, and can be eliminated from
the equation above. This reduces us finally to the general equation:

7 Lg
sz . . (5)

This, then, is a relation which follows if all of the factors which we originally assumed enter
into the case and affect our results, We do not know whether, as a matter of fact, all these
factors do affect them as indicated by the general expression for R above. But, obviously, if all
of the factors enumerated materially affect our results, producing the preceding equation (5),
model experiments are of no value for predicting the performance of the full-sized object. In
the model experiment, we make an object differing in scale from the full-sized object, and test
it at a speed different from that of the full-sized object.  If this method is to be of value in

R=pI*T*F, (ﬁ,
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practice, as a general thing models should be smaller and tested at a lower speed than for the
full-sized object. From equation (5) above, however, we see, considering the first combined
variable, which we must have constent in proceeding from model to full-sized object, that LT
must-be constant, since we know that » is practically constant for standard air. Considering

the second term, however, since the velocity of sound in air is constant, if —g—, is to be constant V
]
must be constant. Considering the third term, g is constant, and if %}% is to be constant we

must have %5 constant. These three requirements evidently reduce to the single one, namely,

that neither L nor V can change. In other words, we cen not use the model and obtain results
for the full-sized object.

However, the equation (5) does not necessarily apply to the case unless it is confirmed by
theoretical demonstration, experience, or practical tests. We do not know that as a matter of
fact, the compound quantities which we originally considered as possibly affecting the case do
all aﬁect it. Suppose none of these quantmes has any effect. We then have the exceedingly
simple formula

R= pL2 V2 times a coefficient

If this expresses the facts, a single experiment at a single speed of & model gives us complete
information on the resistance at all speeds for all sizes of similar objects.

There is a theoretical basis for regarding this as-a basic expression for resistance, the de-
partures from it bemg, if appreciable, of secondary importance. If the disturbance of & fluid
by an object moving through it, or, what is simpler to grasp, if the lines of flow of a fluid past =
submerged object do not cha,nge with speed, then all forces vary as the square of the speed.
For any force is measured by the momentum genera,tad in ynit time in the opposite direction,
and, taking momentum at such a distance that pressure is not affected, the momentum generated
in unit time is proportiona,l to the square of the velocity. Similarly, if the lines of flow are
gimilar as we change size, the momentum generated must vary as I?. From consideration of a
perfect nonviscous fluid we reach similar conclusions, but, as it happens, in a theoretical perfect
fluid objects have theoretically no resistance. Concluding, then, that the expression

R=pI?V? timeés a cosfficient
e »
is a correct first approximation, let us see what we can do to reach & closer approximation.

Suppose that only one of the terms of F; in (5) is significant, the rest having no bearing.

If the first term is the only significant one, we have - -

R=pI?V*F, (EVTI)
Similarly, if the second and third terms are the only signiﬁcant ones, we have

R= DVF(W)

Now, it-is obvious that if only one term is significant, we may or may not have a possible
basis for model experiment, depending upon the nature of the term. Consider first the ex-
pression

R=p[}T"F, (LLI”)

Here the requirement is that LLV should be constant, or, what is the same thing, that E;I-
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should be constant. This results in the undesirable condition that if » is constant LT must
be constant as we pass from model to full-sized object, so that the smaller the model the higher
the speed at which it must be tested. This is not a very desirable condition.

Consider now the second requirement:

72

If ;—,; is constant, since V, itself is constant, ¥ must be constant, and we can not use a low-speed
f :

model.
Consider now the third condition. Here our requirement is that Er,g, is constant. This is

the form found so useful in testing ships’ models. The relation that speeds shall be as the
square root of linear dimensions results in the test speed for the model being low, so that tests
can be easily made. Evidently, however, for & body completely submerged in and surrounded
by & fluid, the action of gravity ean have practically no effect until the proposed speeds approach
the point where vacuua are formed in the fluid. Hence we can confidgntly eliminate from our

general equation above the variable %g- as the one to govern our second approximation.

Consider next the variable —]7?1, Practically all the speeds with which we are concerned
$

in airplane work, except some propeller speeds, are far below the velocity of sound through air,
and there is little reason to believe that the compressibility of the air has a material effect,
because the compression is so small. Also, experiments with projectiles indicate the same
conclusion. Hence we can eliminate:the second term as the one that we must keep when we
seek a second approximation. When we come to the first term, however, the case is different.
We know that air has viscosity, and we know that the viscosity must have some action at all
speeds. Hence the first term can not be argued away on general principles. Also, it may be
remarked in passing that the expression

R=pI*V*F, (ﬁ,)

can be derived independently of considerations of dimensional homogeneity from the equations
of motion of & viscous fluid. However, these equations of motion necessarily assume in the
first place that there is no other factor, such as compressibility, gravity, etc., involved. We
might have origina]lly assumed some more physical quantities present and affecting matters
such as nature of surface, or sizes of turbulent vortices in the wind tunnel, but we seem to be
restricted to one variable in our F; funection if we are to profit by model experiments and the
viscosity variable seems the one we should choose. The wisdom, or otherwise, of the choice
will be shown if model experiments in accordance with the formula do or do not predict full
scale performance.
Having then reduced our original broad formuls to

R=pI*T"F, (L—f) ®

involving the density, the size, the speed, and some unknown function of g! the well-known

Reynolds Number, we need to form some conception of the effect of Reynolds Number, com-
monly called the scale effect. VWhile we do not known the form of the function, we do know
for the flow of water, oil, and air in pipes the relative experimental values. The original wonder-
ful experiments by Reynolds have been repeated and amplified by others since 1880, and it
seems established that at low speeds where the fluid flows smoothly F; has one set of alues,
and at high speeds when the motion is completely turbulent there is another well-defined set of
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values, while for intermediate speeds values are rather indeterminate. Wind tunnel investi-
gations on such objects as cylindrical wires, struts, and streamline wires show that the resistance
departs appreciably from the law of the square with variation of Reynolds Number.

‘When we come to such objects as an airplane, however, we have difficulty with the ordinary
wind tunnel. For constant Reynolds Number to test a model, say, one-twentieth scale, would
require wind tunnel speed 20 times the actual flying speed, and there are no wind tunnels that
can come in sight of this performance. Such speeds would be greater than the velocity of
sound. There appears to be only one practicable solution of the difficulty, namely, the use of &
testing tunnel where we vary the density of the air and hence the value of ».

The kinematic viscosity coefficient » for air varies inversely as the pressure, and decreases
with temperature according to & somewhat complicated relation. Table I below gives numeri-
cal values when the unit of length is the centimeter and the unit of time the second.

TABLE I
EKINEMATIO VISCOSITY COEFFICIENTS » IN em¥soc.

Tempera- Pressuré In atmospheres

centi- .

grade 1410 1 [} 10 20
50 1.284 | 0.1284 0. 02568 0. 01284 0. 00642
40 1,292 1202 . 02684 . 01202 00648
80 1. 800 1300 02600 . 01300 00650
2 1.308 . 02618 . 01308 00854
10 1.318 1318 . 02636 . 01318 00689
0 1329 1820 . 02658 . 01329 00665

~10 1,340 1340 . 02680 . 01340

-20 1351 1351 . 02702 - 01351 00676

—30 1364 1364 02728 . 013684 00682

—~40 1378 1378 03758 01378 00680

—50 1392 1302 02784 . 01392 00696

The variable-density wind tunnel of the National Advisory Committee for Aeronautics,
as originally suggested by Doctor Munk of our staff, was described to the society two years
ago, and & few sample results given. A good deal of experience has been had since then with
the appliance. One lesson of experience has been that when we are working under a pressure
of 20 atmospheres it takes but a small electrical spark to kindle a substantial fire. However,
these little practical difficulties have been overcome, and experience in testing a number of
different airfoils, etc., indicates that this apparatus, or the equivalent, is essential if we are to
mske & thoroughly reliable second approximation to the performance of an airplane from
model tests.

Reynolds Number %Zis & compound ratio whose numezical -v.'alue in the case of any given

object depends upon the ratios between the actual values of LV and » and their unit values.
Unfortunately, each type of object has its own series of Reynolds Numbers because as a rule
the values of L are not comparable for dissimilar objects. Thus for an airplane wing we nat-
urelly use for L in Reynolds Number the length of the chord. For an airship we would use the
length or the diameter or any linear function of the two. But L for the airship would not be
comparable with L faor the airplane.

Considering airplanes as they are, using the chord of the wing in inches as L, and speeds
in statute miles per hour, the Reynolds Numbers coms out fairly large. Thus for an airplane
of 5-foot chord, at 100 miles per hour in a rormal atmosphere, the Reynolds Number will be
some 4,800,000. For its model of 6-inch chord, in a wind tunnel at 100 miles per hour with
normal air, the Reyrnolds Number will be 480,000. '

Attention is invited now to figures 1 to 3, giving in condensed form results of recent tests
of three airfoils of well-known form in the variable-density wind tunnel. Necessary data as
to the conditions and the airfoil section to which they apply are shown on each figure. Results
are plotted as curves of lift and drag coefficients as ordinates over angles of attack—ao—as
abscissae, following the standard practice of the United States National Advisory Committee
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for Aeronautics. Figure 1 shows results for an American section, U. S. A. 27; Figure 2
shows results for a British section, R. A. F. 15; Figure 3 shows results for a German section,
G6ttingen 387. It happens that these three typify the medium, the thin, and the thick sections.

[} [ ] | 14 [] ] [ t T
| = = Reynolds l = Reynolds
L6 Afrln. ka/mz Y o, .52 16 [Afm. kgq/m' Y o .52
e 00 270 175,000 |_e 700 288 185000
X 258 725 456000 X 25/ . 727 481,000
I4FA 510 1470 800,000 A 570 1528 950,000 .28
| O /0./4 3/8.0 1,890,000 0 /075 3350 £,080,000
O /892 6280, 3570000 7% —Q 2000 630.0 3580000 ]
L2 2 24
AN
10 —8 20
18 y, 3 ‘,f ./81
s A 7 ~ &
| o . ) i |
. 7 7 2
! 7 d )
04 . 08 0.4 08
/ o
i b4 A
0204 < 04 0.2 L - 04
-
oy, - M
0.05% .00 0.0 7 .00
‘-ag . o o o o I3 o -aa .
~4* 0° 4°._ 8° 12° 16° 20 -4° 0° 4° _8° 2> Je°
—a— a—
F1a. 1.—Liff and drag characteristics of USA 27 as tested In the Variahle F16. 2~Lift and drag charscteristics of RAF 15 as tested In the
Density Wind Tunnel Variable Density Wind Tunnel
] 7= " Reynolds
1.6 —I—Afm. Ikg/m' yAlo. L 32
® /.00 281 173,000
X g2 e e
AN .
M4rQ 1620 3050 1,820,000 | JBer+28
-0 /8.80 620.0 3470,000 i
[2 .24
10 y 4 .20
Tas F 16 |
G y G
I a8 3 74 .72 [
yil %
04— w7 .08
0.2 / 04
e '
0.0 — 00
’ B =
Ry T - TR 7 T 7 N

>
F1a. 8.—Lift and drag characterlstics of Gotiingen 387 as tested
in the Variable Density Wind Taanel
Ignoring minor eccentricities due to accidental causes, unavoidable experimental error, o
etc., these curves seem to warrant & few broad conclusions, which, by the way are in agreement
‘with other results too numerous fo include.
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In the first place, the scale effect appears to have more influence upon the drag than upon
the lift. This may be expiained upon theoretical grounds.

In the second place, the scale effect increases more and more slowly as the Reynolds Num-
ber increases, so that conclusions drawn from experiments with airfoils within the Reynolds
Number ' range of ordinary wind tunnels can not safely be axtended to much larger Reynolds
Numbers.

In third place, the consistency of the results gives us reason to think that for present-day
airplanes we are justified in ignoring the effect of other factors than Reynolds Number in reach-
ing our second approximation to aerodynamic properties of airfoils,

In the fourth place, the thin airfoil appears to show less scale effect than the thick airfoil.

In the fifth place, so far as airfoil action is concerned, the scale effect is, after all, secondary,
though by no means negligible when we undertake to estimate closely.

The comments above apply only to airfoils. They do not necessarily apply to wires,
struts, ete. Such appendages can be tested separately in the ordinary wind tunnel at Reynolds
Numbers much closer to the numbers on the full-sized airplane than is possible with the airplane
structure proper.

When we enter the somewhat vexed field of aircraft propellers, model experiment is unques-
tionably our surest guide. Here, as in all other cases where we utilize model experiment, we
must finally assure ourselves by experience or full-scale experiment that we have a safe law of
comparison, but-the difficulty of accurate full-scale propeller tests in free flight renders it-almost
essential for the present that we investigate laws of propeller action by model experiment.

This has been done with good results in the merine field and air propellers are even more
favorably circumstanced. For instance, for propellers in water we can not apply our law of
comparison when cavitation is present. Cavitation does not trouble air propellers as yet.
The propeller driving a vessel, assuming the atmospheric pressure as equivalent to 34 feet of
water, is working in an inelastic fluid under a total head to the center of propeller of, say, from
35 to 60 feet. The. airplane propeller is working in an elastic fluid under a total head, when
near the ground, of something like 6 miles. This not only eliminates cavitation but enables
us to adopt efficient, blade sections that would be impossible in water. The airplane propeller
designer is fortunate in this fact and in the further fact that he can use two-bladed propellers.
These are capable of more efficiency than three or four bladed propellers, but can seldom be
used for marine propellers because when working in an irregular stream, as they must at the
stern of a ship, they are liable to cause excessive vibration of the ship.

Models in water act very much as in air, and experiments with thin, narrow two-bladed
propellers in water show efficiencies fully as good as those of medels of airplane propellers.
Tabie I below gives maximum efficiencies in water of some two-bladed model propellers. They
had ogival blade sections, straight faces of uniform pitch, and circular ares for backs, the odges
being sharp, not rounded.

TABLE II -
MAXIMUM EFFIOIENCIES OF 2BLADED 16INCH MODEL PROPELLERS IN WATER -
| Piteh ratios
Camber
Mean
Jatlo. | wiath | 04 | of | o8 | Lo | 12 | L5
radins | . ratio L i
. Maximum efficiencles
i -
0.1241 0.075 }—oooo 0.85
L0744 126 .84 .
. 0485 . 200 G 58 0.71 078 .82 0.83 0.84
.0338 .a78 A T
. ”

From ‘‘Some Results of Tests of Model Propellers,” by A. V. Curtls and L. . Hewlns, Transeetions Society of Naval Architects and Marine
Engineers, Vol. 18, 1905

The airplane propeller designer labors under one disadvantage. There is no doubt that

as propeller tip speeds in air approach the vslocity of sound, we may expect radical departures

from the laws of action at lower speeds. That is & complication I shall not attempt to unravel.
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Before taking up the model experiment end of propeller action, it may be as well to take
up one general consideration.

Since thrust of a propeller is proportional to the sternward momentum per second generated -

by its action upon the fluid in which it works, it follows that there must be a certain energy
carried off in the fluid to which velocity is communicated. Hence, no propeller can show an
efficiency of 100 per cent, and the actual efficiency of an ideal propeller at & given speed of
advance must always diminish as its thrust increases. Following the treatment proposed by
McEntee in 1906 for propellers operating in water, we can gain some idea of limits in air.

Suppose we have an ideal frictionless propelling apparatus which takes hold of the air
and discharges it directly aft without change of pressure and with uniform absolute velocity
u feet per second, the velocity of advance of our ideal apparatus with reference to undisturbed
air being » feet per second. Then, if A denotes the area in square feet of the slipstream, the
mass of the air acted upon per second is

(’;ﬂ A wtu).

The thrust T in pounds from Newton’s third law is equal to the sternward momentum

generated per second, or
r-(¥)40t0u .
Useful work equals
Tv=<;£) A w+u) w

The lost work, or kinetic energy, of the air discharged equals

Cf) 4 w+u) (;L’)
Whence gross work equals

C]ﬁ) A WwHu) uv+©—v) A w+u) (;f)

Usefulwork —va
Gross work \? +3

Efficiency e equals

If we solve for u in the expression for thrust, we have

w=(7+50)3
Substituting in the expression for efficiency, we have
o= 4
(e o)t
This, then is the general formula for the efficiency of an ideal frictionless propelling appa-

ratus, discharging the fluid passing through it without increase of pressure and accompanying
loss of efficiency.

Applying to an air propeller of diameter d feet, substitute H—f: for A. Also give g¢ its

standard value of 82.174 foot/seconds?, w the value for standard air of 0.07651 pound/feet?,
and express v in miles per hour V instead of feet per second.
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‘When this is done our formula for air becomes

3+\/[(0(01766'§13>2;£71€);[) zzzrvﬁf_l— 3+\/(9%ff,,T +1)}

Figure 4 shows contours of ideal efficiency derived from the above equations plotted upon

T
values of d and 7

It is seen that curves of constant efficiency are parabolas, with values of 11—;5 as. ordinates
and values of diameter as abscissae; also, once we have fixed the diameter and the value of
%;5 we fix the efficiency. It is obvious also that if, for & given diameter, we increase thrust

without changing speed, or if, for & given diameter, we decrease speed without chenging thrust,
the efficiency necessarily falls off.

07, k T o7 I ; y
8 g 9(_5?[__ K
o '%ﬁu/ i v oo+ /7@ / ?V—? AT
Yl AV/E e NN ATAVRYL
SRR iy wanvmunaniEC R n | v v i awany
& [ / = WA AA A I/ A
3% 1 AN ST A Tx
1111 ATAV/YA E RN T AV A4
K I///f// AL AL o R /] / ) // // P
.02 //// // g o2 ‘/}’/l 7 ,/ ,/ L
/ A4 - HILLL A V) A < -
Bun///varaup= Nwr///7/794% =
: 7% P 8 ’ _%gé’ ) B =
w1 R N o, ;‘/
'000 2 i Di 6.)‘ 8' f‘{gf dIE Sl '000 o * i & ) 8' fiaf d/Z S
jometer in feet iameler in feef,
F10. 4—Ideal propeller efficlency In alr a3 affected by thrust In F1a, 5.—~Actual propeller, eficency In air derlved from model pro-
pounds— T, speed in M. P. H.- ¥, and diameter in fest—d peller tests—propeller E Table I11

While the above conclusions can be legitimately drawn from Figure 4, we must not forget
that this refers to an ideal propeller of the best possible efficiency. Actuel propellers in opera-
tion lose not only by the energy carried off in the wake, but by their friction and the energy
due to transverse motion in the wake, both tending to reduce efficiency. If we assume a law
of comparison, which will be discussed later, we can, from tests of a model propeller, draw a
disgram similar to Figure 4, covering the performance of all propellers similar to the model.
This is done in Figure 5 for a propeller of 0.9 pitch ratio, propeller “E’” of Table IIT tested
by Doctor Durand. It will be observed that in its general features Figure 5 corresponds
fairly well with the ideal diagram of Figure 4. However, the efficiency contours, instead of

increasing indefinitely as we increase the diameter and decrease the values of %7;-, reach & maxi-

mum, and then for smaller values of %—; the efficiency falls off very rapidly. Above the maxi-
mum line the agreement with the ideal diagram is better. We still have the feature that the-
efficiency of this family of propellers is dependent upon. the diameter and the value of %;,
If in level flight we are operating above the parabola of maximum efficiency and undertake
to climb, the value of % necesserily increases and the efficiency necessarily falls off. If we

are operating in level flight in the region below the contour of maximum efficiency and then
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undertake to climb, the efficiency increases for & time and then falls off as before. In any
case, however, the efficiency of & given propeller varies with the flight conditions.

A propeller is an object moving through sir and our general equation (4) applies.
Rewriting this with T to denote thrust instead of B to denote any resistance, and diameter D
in place of L, we have : :

. 2
\ T=pV=Dst<—.DL-V, %1 %g: Ty Py — — —) (4:)

As before, we can confidently eliminate the gravity variable %% ‘When it comes to the

compression variable -]I;:s we are not upon such sure ground. as for the airplane, because tip

$

speeds are much greater than airplane speeds. Probably some types of blade section can
approach much more closely than others the velocity of sound in the air without it being
necessary to take account of the compression variable. When that does become necessary
the problem can be met by testing propeller models in high speed wind tunnels, ¥ being
airplane speed. It would seem from this point of view that even now model propellers should
be tested at full speed. Eliminating the compression variable as not yet important, we come
to the same general expression as for the airplane or

T= T DF, (‘17”1’)

Here we meet the same Reynolds Number complication. Now, we have seen in dealing
with airfoils that the seale effect correction for them was secondary. We know, teo, that in
propeller action, where a blade is attacking air already somewhat disturbed by its previous
passage or the passage of another blade, we may expect great turbulence in the action and
we know that the greater the turbulence the less the scale effect correction for viscosity.

So we conclude that if we drop the Reynolds Number variable we have left a first
approximation sufficiently close to exactness for practical present-day engineering purposes.

This leads us to the simple expression i

T=pV3IPF; (ry, 12y — — —)

If this were exact, a model of any size at any speed would tell us all we need know, but
bearing in mind that our expression is approximate and the nature of the quantities ignored,
we should make our models as large as possible and test them af as high a speed as possible.

The quantities r,, 7, etc., are characteristic ratios and it is very important if we are to
utilize model propeller tests to best advantage that we use ratios that are truly and adequately
characteristic. Systematic treatment is necessary here. Much progress has been made in
connection with seronautic propellers by regarding their blades as composed of sections of
airfoils, and this is essentially s fruitful method of procedure in our search for more efficient
forms. It is interesting to note that the underlying idea is the same as that of Mr. William
Froude, when for the marine propeller, in 1878, he put forward his blade theory, in which the
propeller blades were regarded as made up of plane elements advancing through the water.
Mr. Froude at that time said, with much justice:

No theoretical treatment of the action of an actual serew can be sound which does not incorporate and
mainly rest on the principles embodied in the treatment of the problem of the plane, and, indeed, the character
of the results must, in their most essential features, be the same in both cases.

The fundamental difficulty with the Froude blade theory was that propeller blades are
not & plane of no thickness. This fact has been fully recognized by aeronautic designers in
treating them as made up of airfoil elements, but after all the model propeller and the full-sized

propeller must each be treated in the end as & whole, and our ratios must be based upen that

fact.
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It is obviously desirable to have dlameter appear in all ratios if possible, since diameter is
our basic dimension.

The first thing we need to. consider is the most desirable ratio by which to express the
obhqultles of the blades, or the angles which they make with the axis of the propeller. This
is sometimes done by stating the angles, but the best plan appears to be to adhere to the idea
of pitch. This tends to become absurd in propellers with blades relatively as thick as those
used on airplanes, but after all it is always possible at any section to establish a line making
a definite angle with the axis. If the propeller has a working face with any material portion
of it flat or straight in section on the driving face, this is naturally the line used to express
pitch. However that may be, for the family of propellers derived from a given model, the
ratio between pitch and diameter is always constant, and as a rule the whole family may be
characterized by the extreme pitch ratio. This is about the simplest quantity we can use
which gives an idea of the general features of the propeller with reference to the pitch, or blade
obliquity if we prefer that expression. Then one of our ratios is the ratio between pitch and
diameter, denoted by a.

We need something expressing relative blade width. Aspect ratio will do it, but there
seems no necessity for departing from what is frequently called in marine propellers the mean
width ratio, namely, the ratio between the mean or average width of the blade and the diameter.
If we were always dealing with blades of the same developed outline, it would be simpler and
better to use the ratio between the maximum width, a thing we need always to know and use,
and the diameter. This would quite well characterize the propeller, but does not seem to be
quiteso good for universal use in view of variations in blade outline. _

We come now to the most difficult ratio to express in practice. We need something to
characterize the blade thickness. If propellers all had radially straight faces and straight
backs, the simplest and obvious plan would be to extend the line of the face to the axis, the line
of the back at-maximum thickness to the axis, and express the characteristics of the propeller
as regards blade thickness by the ratio between the intercept on the axis thus obtained and the
diameter. This is & method which has come into & good deal of use for marine propellers of
late years, but the backs of aeronautical propellers vary so much that it is doubtful if we are
yet ready to adopt this as a standard ratio. I suggest tentatively for this last ratio the camber
ratio at three-fourths of the radius.

It is now necessary to consider what to do with results of model tests.

These results, such as curves of thrust and torque or dimensionless coefficients derived
from them, including curves of efficiency of propeller, are usually plotted initially upon the

dimensionless quantity % when V'is speed of advance of the propeller with reference to undis-
turbed air in feet per second, » denotes revolutions per second, and D is diameter of the pro-
peller in feet. Now ?{% is & natural coefficient and excelent as & basic variable when we are

dealing with one propeller, but when dealing with systematic propeller research and making
dlagrams for design purposes it is somewhat lacking. For a single propeller, when we plot

7
upon 'ED we are virtually plotting upon the slip ratio 8, sinceif ¢ denote pitch ratio nlﬁ':a(j —8).

The question of the basic variable to be used in plotting experimental data for design pur-
poses is & very important ¢ne and worthy of a little examination. In the first place this basic
variable must be dimensionless since we wish to use model results for dealing with full-sized
propellers. There are any number of dimensionless functions available and they are readily
converted one to another.

In the second place, looking at the matter from the design point of view, our basic variable
should take account of or involve all the quantities known or assumed upon which a propeller
design depends. Here we meet-the fact that we do not necessarily base a propeller design
always upon the same quantities, However, considering airplane, propeller, and motor sepa-
rately, let us see what quantities we have.
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For the sirplane we have speed, drag or resistance, and effective or useful power used in
overcoming the drag at the speed of the airplane. For the propeller we have speed, revolu-
tions, torque, thrust, power absorbed by torque and power delivered by thrust. For the motor
we have revolutions, torque, and power delivered to and absorbed by the propeller.

Now, the propeller is the middleman, as it were, and mey be considered as driving the air-
plane or as absorbing the motor power. From the first point of view we need & basic variable
involving speed revolutions, and either thrust or power delivered by thrust. From the second
point of view our basic variable should involve speed, revolutions, end either torque or power
absorbed by the propeller. |

It appears then that to meet all contingencies we really need two basic variables and obvi-
ously they should be readily convertible or connected by a simple relation. This indicates
that our two basic variables should both involve speed and revolutions and then one should
involve torque and the other thrust, or one should involve power absorbed by the propeller
and the other power delivered by the propeller or useful power. Esach set has its advantages
but the set involving power seems preferable for two reasons. When we deal with motors we
normaslly deal with power not torque, and the relation between power delivered to and delivered
by the propeller is very simple, being the efficiency of the propeller with no intervening factor.

Having settled upon the quantities to enter into our basic variable, its form is readily deter-
mined by applying the principle of dimensional homogeneity. Consider the variable Px R¥ V=p
where P denotes power; R, revolutions; and ¥, speed; and the exponents %, 7, and # are to be

determined. The dimensions of P are m B ¢=3; of R, t~!; and of ¥V, {~'. Then dimensionally

Px RY Vs—mx Px {—2x {—¥ [s {—5 [,

X41=0 2X+Z-8=0 —8X-Y-Z=0
X=—1 Y=—2 Z=6

e

78
Our expression is ;’LRE' This or the equivalent is well known and has been used more or

less for many years. Of course we can use the reciprocal or any power. For marine propellers

a very convenient expression is
J_(_a
PE:

o1, (BYP)

138

or calling

For aeronsutic work we need to keep p and from a pra.ctlca.l point of view there seem to be
some advantages, as in marine work, in using expressions where R appears in the numerator
and in the first power.

These considerations lead us to the expressions below for basic variables.

Based on motor power

R+/P

Based on useful power

BT .

Now we must select the essential things to be plotted upon our basic variable. Efficiency
is one, of course. The other quantity that we need is some dimensionless function involving
diemeter—our primary dimension—and preferably it should involve diameter in the first
power and in the numerator. '

Such 2 function is p-rﬁ, which we may call &. When we come to plot efficiency and §

upon our basic variable we find it desirable to use logarithmic SC&]% to keep curves within
manageable limits.
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The most fruitful model propeller experiments are those made with series of propellers
changing one variable at a time. The field is too vast to cover fully in this way, but experi-
ment soon shows that some of our variables are primary in their effects, while others are rather
secondary, and may be mainly taken account of in a first approximation without special experi-
ments. HExperiments made with a group of propeller models varying systematically were
recently completed by Doctor Durand for the United States National Advisory Committee
for Aeronautics, and illustrate the points referred to above. Thirteen propellers, “A’ to “M,”
were tested. They are shown by projection and sections in Figures 6 to 9 inclusive, and Table
I1I below gives their essential characteristics.

TABLE III

MODEL PROPELLERS TESTED BY DURAND

. Maxi- Camber

Desig- Pitch mom ﬁg‘:ﬁ ratio
nation ratio width ratlo et 0.76
ratio radius

A 05 | 0.0833 0.050 0.107

B .8 0383 070 . 107

Qo T 0833 070 .107

D .8 0833 .070 .107

E .0 0833 .070 107

F 1.0 gg 070 .107

[¢] L1 070 107

H .7 0833 .070 .118

I T 0833 070 .128

J T 0833 .070 .139

K T 048 107

L T 1000 . 083 107

M T 0789 -068 107

It will be observed that propellers A to G, inclusive, have essentially the same blade sec-
tions similarly distributed radially, but differ in pitch, the pitch ratios running from 0.5 to 1.1.
This makes seven propellers with variation in pitch as the primary characteristic. Propellers
H to M, inclusive, and also C, all have the same pitch ratio, the differences being in mean
width ratio and thickness, expressed by camber ratio at 0.75 radius.

Figures 10 and 11 show the results for the propellers of varying pitch plotted as non-
dimensional coefficients upon the basic variable deduced above. Figure 12 shows the seven
propellers of uniform pitch but varying blade sections plotted in the same manner upon the
basic characteristic or power only. We see from Figures 10 and 11 that the possible efficiency
of an airplane propeller is essentially & question not of propeller design buf, of the requirements
to be met by the propeller. Given the power o be absorbed or delivered, the speed, and the
revolutions per minute for'this faniily of propellers, and _the maximum efficiency atteinable
is fived, and it may well happen that it will fall below the 80 per cent efficiency, which is some-
times regarded as normal. Of course Figures 10 and 11 refer to only one family of propellers,
but it will be found that almost any family will plot in the sams general way. The efficiencies
may be a little higher or a little lower, but the variations of efficiency will follow closely the
variations of Figures 10 and 11. _

Studying these figures, it will be found that for a given combma.tlon of power, speed, and
revolutions a definite pitch ratio shows the maximum efficiency, buf there is a relatively wide
range of pitch ratio on each side of that for maximum efficiency where the falling off is slight.
Keeping revolutions, power, and speed the same, we may use a smaller propeller of coarser
pitch or a larger propeller of finer pitch without a reduction in efficiency of more than a point or
so, an amount which could hardly be detected in service.

In view of Figures 10 and 11, inspection of the propellers of the original Wright plane pro-
duces admiration of the engineering genius of the pioneers of the air. This low speed plane has
two relatively very large propellers of coarse pitch. These characteristics are essential to the
best efficiency under the conditions to be met. Fast planes of the present dey may obtain
good efficiency with single propellers of high revolutions and fine pitch, but if the Wrights had
fitted such a propeller their plane probably would not have flown at all.

848—261——18
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Coming now to Figure 12 it will be observed that the variation of efficiency is remarkably
small for the variations of blade section.of all seven propellers, C and H to M inclusive. The
differences are almost within the limits of error to be expected in such experiments. As regards
diameter, the variation resulting from change of section is normal, the thicker blades requiring
smaller diameter because their virtual pitch ratio is greater. Thm blades and narrow blades,
similarly, act as normal blades of slightly greater diameter. The efficiency curves in all three
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figures show minor inconsistencies which could rea,dlly be faired out. They were taken from
curves plotted on entirely different variables.

In concluding this part of my subject, it might-be pointed out that systematic diagrams
such as Figures 10 and 11, from one family of propellers, may be used to extrapolate with a good
desl of accuracy the rwults to be expected from propellers of another blade type when but one
of the type has been tested. If, for instance, the one tested has & pitch ratio of 0.7, we will say,
and its 4 line falls 3 per cent a,bove or below the § line for the 0.7 pitch ratio in Flgures 10 and 11
we may conclude with good approximation that the same relation will hold for pitch ratios of
0.6 and 0.8. Itisrather remarkable at first sight to see how & lines for propellers of quite different
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blade sections tend to parallel one another when plotted upon the basic variables used and how
little efficiency is affected by variations of blade sections, etc.

But after all when we go back to first principles these results are perfectly natural.

In air the pressure in the slipstream can not differ much from the undisturbed pressure of
the air. Then the thrust is proportional to the sternward momentum, and as shown in Figure
4, there is a certain unavoidable loss or waste of power associated with it, even if we had a perfect
propellmg instrument. With actual propellers, that are not perfect, we have two further losses
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due to edge or frictional resistance of the blades and to the transverse momentum communicated
to the air involving energy. Neither of these two further losses can be eliminated, and from the
nature of the case it does not seem that there is a large field for reducmg them, though there is
plenty of opportumty to increase them.

As tip speeds increase it will be more and more important to develop types of blade section
to avod the quasi cavitation that must be guarded against.

It may be recalled that several times reference has been made to the difficulties of satis-
factory full-scale trials. However, we can never rely absolutely upon model experiments until
they have been checked by corresponding full-scale trials. During the last year the Nationsl
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Advisory. Committee for Aeronautics has attempted such a comparison, the model experiments
and the full-scale tests being both carried out by Prof. E. P. Lesley. The full-scale experiments
with five airplane propellers on a VE-7 airplane with a Wright E—4 engine, were conducted at .
the Langley Memorial Aeronautical Laboratory between May 1 and August 30, 1924. ~The
model experiments were carried out subsequently with models of the same propellers and also
a partial model of that part of the airplane exposed to the slip stream, the model being on the
scale of 0.3674.
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Heretofore we have considered propeller performance alone. When we come to combine
the propeller and its airplane, we meet the complication that each reacts upon and affects the
performance of the other. The slip stream from the propeller affects its airplane for tractor pro-
pellers, increasing the resistance and somewhat disturbing the balance. This can usually be
expressed as regards propulsion matters as an augment of the drag. Furthermore, the dis-
turbance set up in the air by the airplane extends to the air around the propeller, the net result
being that the propeller, instead of moving uniformly through the air at the speed of the air-
plane, moves thrqugh air variously disturbed. For the tractor propeller the net result is that
the air acted upon by the propeller has already had its relative velocity more or less checked
by the reaction from the airplane.
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About the only practical way to deal with this matter is.to regard this disturbance as
equlvalent to a uniform slow:lng up of the air, so that a propeller, instead of behaving as if it
were passing through still air with velocity T of the airplane, behaves as if it were passmg
through still air with a velocity V;, less than that of the airplane.

When we come to consider the efficiency of the combination, it is unfortunately necessary
to make a clear distinction between the efficiency of the propeller and the “efficiency of pro-
pulsion.” The efficiency of propulsion is best regarded as the ratio between the power delivered
to the propeller and the power necessary to propel the airplane under the circumstances if there
were no propeller acting. The efficiency of the propeller, however, is the ratio between the
useful power which it delivers and the power delivered to it. The power which it delivers
depends upon its actual thrust and its speed, T3, through the eir upon which it acts. The

thrust is normally greater than the drag of the airplane without the propeller, and T is nor- '

mally less than 7. These two factors affect efficiency in opposite directions, and the result is
that the efficiency of propulsion may be greater or less than that of the propeller, according to
circumstances. In practice we may usually expect to find it somewhat less.

In the free flight experiments at Langley Field it was necessary first to determine the drag
of the airplane. This was done over & range of speed from 50 to 135 miles per hour by meaking
steady glides at various steady angles, the propeller being throttled until the thrust was very
close to zero, ¢orrection being subsequently made for its departure from zero. This being done,
it was possible, from the angle of glide and velocity through the air during the glide, both of
which were carefully measured, to determine the drag and the ratio between lift and drag. The
power could be determined only indirectly, by means of careful calibration runs of the sirplane
engine on the testing stand with full throttle. The power flights which were used for reduction
were made at full throttle, consisting of runs at air speeds from 50 to 135 miles per hour in level
flight, climb, or power dive, as determined by the speed. It being impracticable in the full-
scale trials to determine the effect of the slip stream upon the airplane or the airplane upon the
propeller, the efficiency in the air was regarded as the efficiency of propulsion, not the efficiency
of the propeller.

The model tests were made with models of the same five propellers used in the air, and, in
order to make them comparable with the free flight test, they also were reduced to an efficiency
of propulsion; thet is to say, a thrust coefficient was obtained by using the net thrust, which
was the actual thrust less the difference between the drag of the airplane model with the pro-
peller working and its drag without the propeller, all being plotted upon the basis of the speed
through the air. The five propellers used had the dimensions and coefficients given in Table IV.
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TABLE IV
DATA OF FIVE PROPELLERS USED IN PREE FLIGHT TESTS

Designa-| Diame- Pitch | o | Mesn | Omber
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The model results generally were quite consistent.

Figure 13 shows the results of model propeller I with the partial VE-7 model in place,
compared with the model results of the propeller alone. In Figures 13 to 19, inclusive, P,
upon which values of (» depend, does not mean power, but foot-pounds per second. 7' denotes

thrust in pounds. Of course, as regards the propeller, abscissae of 771717 mean something slightly

different according as the airplane model is or is not present. With the propeller alone it
refers to the true slip; with the propeller and model it refers to the apparent slip, and the
case is also affected by the use of the net thrust instead of the sctual thrust. In the full-
scale work we can not determine the actual drag and the air speed relative to the propeller.
Figure 14 shows for propeller I in free flight the curves of Cr, (b, and corresponding effi-
ciency of propulsion on the basis already explained. Finally, in Figures 15 to 19 there are
brought together the results of the model tests with model of plane in place, and the free flight
tests in the shape of curves of Cr, C:, and efficiency. It will be observed that in each case
the coefficients are larger in free flight than as estimated from the model results. While the
differences vary, as is to be expected, they are consistently too great to be accidental, aver-
aging somewhat on the order of 8 per cent, although for propelier D’ they are very small. If
is significant that the efficiency differences are very small indeed. Without entering too much
into the realm of speculation, it may be pointed out that there are several more or less constant
perturbing causes. One is the scale effect; another is the fact that in the model propeller tests
the propeller shaft is always parallel to the direction of the flight, whereas in the flight tests
the angle made by the propeller shaft with the flight path varied between zero and ten degrees.
Inspection of Figures 15 to 19, however, indicates that the perturbation, broadly speakmg,

increases with the thrust; that is to say, it increases as ETZ; decreases. This points to a third

cause of perturbation, namely, the elastic deformation of the blades of the propeller under
stress, a deformation that would be much greater on the full-sized propeller than on the model
tested at less than full speed. A moderate deformation of the full-sized propellers would account
for all the discrepancies in Figures 15 to 19.

There are, however, too many uncertainties in such a complicated series of experiments
to enable us to fix positively the causes of the discrepancies. In their general features the
model and full-scale curves agree very well. It should be pointed out also that, although a
difference of, say, 8 per cent of Or looks large on a diagram, for practical purposes it is not of
primary importance. For constant pitch ratio, revolutions, and speed the diameter of the
proper propeller vartes as the sixth root of Cp, so that a discrepancy of 8 per cent in the value
of C» means a discrepancy of only about 1 per cent in propeller diameter. This is an approxi-
mation adequate for the purposes of the engineer. Full-scale tests, where torque and thrust
are determined by measurement instead of inference, are of course very desirable, but as far
as they go, those to which I have invited your attention are encouraging to those of us who
believe that model experiment properly interpreted is not only valuable but indispensable to
aeronautical development.
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